Proposing a Standard Weh API! #244 FEBRUARY 1.996

S _Jsormmre
r O TOOLS FOR THE
% PROFESSIONAL

J] 0 U R N A L |l

Data Communications

AND

nternet Development,

= JAVA COMMAND-LINE ARGUMENTS
= [MPROVING KERMIT PERFORMANCE p—
= DEBUGGING CGI APPS e
= NETWORKING WITH WINSOCK 2.0

IMPLEMENTING MULTILEVEL
UNDO/REDO

NETWORKING INTELLIGENT DEVICES
EXAMINING TOOLS.H++

$3.95 ($4.95 CANADA)
02 BOOKS ON HTML,
- ALGORITHMS,
AND MORE
3835116562

A Miller Freeman Publlcahon

SOFTWARE
r 0 S TOULS FOR THE
& PROFESSIONAL

0 U RN A L |00

PROPOSING A STANDARD WEB API

by Michael Doyle, Cheong Ang, and David Martin

At last count, there were nearly a dozen APIs vying for hearts and home pages of Web
developers. Our authors propose a standard API that leverages the concept of
embedded executable content for interactive application development and delivery.

IMPROVING KERMIT PERFORMANCE

by Tim Kientzle

Tim compares the error-handling strategies of a variety of popular protocols, then
presents heuristics that improve the performance of Kermit's windowing strategy.

CGI AND THE WORLD WIDE WEB

by G. Dinesh Dutt

The Common Gateway Interface (CGI) makes it possible for Web servers to interact with
external programs. Dinesh presents a program that reports gateway-execution errors.

USING SERVER-SIDE INCLUDES

by Malt Kruse

Server-side includes are commands embedded inside HTML documents that cnable your
page to do something different each time it is loaded. Matt describes the format of these
commands and shows how to write programs that work with your Web pages.

JAVA COMMAND-LINE ARGUMENTS

by Greg White

Greg introduces a package of Java classes that parse the command-line parameters for
HtmIXlate, an application that converts HTML to RTE. Because HtmiXlate doesn't require
display graphics, Greg made it an “application” instead of an “applet.”

IMPLEMENTING MULTILEVEL UNDO/REDO

by Jim Beveridge

The Undo/Redo mechanism Jim presents here is based on a history length limited only
by available memory. Because it is implemented in Visual C++ and MFC, this
mechanism can easily be added to your applications.

28

42

52

58

04

BRSO 1
Wfr -

B

EMBEDDED SYSTEMS

NETWORKING INTELLIGENT DEVICES

by Gil Gameiro

Novell's Embedded Systems Technology (NEST) lets you incorporate network protocols
and client services into embedded systems. Gil uses NEST to put an intelligent coffee
maker online, then controls it with a Windows-hosted menu program.

NETWORKED SYSTEMS

08

FAST NETWORKING WITH WINSOCK 2.0

by Derek Brown and Martin Hall

Derek and Martin show how you can get maximum performance from WinSock 2.0
applications b\ likmg advantage of two features new to the spec—event objects and
overlapped /O

Dr. Dobb’s Journal, February 1996

76

EXAMINING ROOM

EXAMINING ROGUEWAVE’S TOOLS. H++

by P.W. Scherer

RogueWave's Tools.h++, a C++ library consisting of more than 100 classes, has been the
comerstone of Perry’s development efforts ever since he ported over 30,000 lines of C++
code to an equivalent app that was only 6000 lines long.

PROGRAMMER'S WORKBENCH

80

LEX AND YACC

by lan E. Gorman

Jan describes how he used traditional compiler-development techniques and the MKS
Lex & Yacc Toolkit to build a keyword-query compiler for a CD-ROM database.

COLUMNS

86

PROGRAMMING PARADIGMS ¥

by Michael Swaine

Before continuing his examination of little languages for the Macintosh, Michael looks at
a number of books devoted to HTML coding,

C PROGRAMMING

by Al Stevens

Al launches “Quincy 96,” a C/C++ interpreter that runs under Windows 95 and is based
on GNU C and C++. Among other features, Quincy 96 manages two kinds of
documents—project documents and text source-code documents,

ALGORITHM ALLEY

edited by Bruce Schneier

Binary searches are algorithmic staples that can be used in just about any program.
Micha Hofri sees how efficient he can make a basic binary-search algorithm.

PROGRAMMER'’S BOOKSHELF

by Dean Gahlon

Dean compares Practical Algorithms for C Programmers, by Andrew Binstock and John
Rex, and Practical Algorithms in C++, by Bryan Flamig,

Dr. Dobb’s Journal, February 1996

117

121

135

139

FEBRUARY 1996
VOLUME 21, ISSUE 2

FORUM

EDITORIAL b

by Jonathan Erickson

LETTERS 10

by you

SWAINE’S FLAMES 144

by Michael Swaine

PROGRAMMER'S
SERVICES

OF INTEREST 142

by Monica E. Berg

SOURCE CODE
AVAITLABILITY

As a service to our readers, all source
code is available on a single disk and
online. To order the disk, send $14.95
(California residents add sales tax) to Dr.
Dobb’s Journal, 411 Borel Ave., San
Mateo, CA 94402, call 415-655-4100 x5701,
or use your credit card to order by fax,
415-358-9749. Specify issue number and
disk format. Code is also available through
the DDJ Forum on CompuServe (type GO
DDY), via anonymous FTP from site
ftp.mv.com (192.80.84.3) in the /pub/ddj
directory, on the World Wide Web at
hrtp://www.ddj.com, and through DDJ
Online, a free service accessible via direct
dial at 415-358-8857 (14.4 bps, 8-N-1).

NEXT MONTH

Little languages are a big deal 1o most
programmers—and they're the focus of
our March issue.

EDITORIAL

Not Without
Controversy

literature would be immune to controversy, But then Sven Birkets, noted critic, author of the
acclaimed book The Gutenberg Elegies: The Fate of Reading in an Electronic Age, and self-
appointed latter-day Luddite has an excuse—it's his editor’s fault. Isn't it always.

Birkets's The Gutenberg Elegies is a wonderfully written, thought-provoking examination of the
impact of digital technology on literature and reading. Presumably, it was the book— in particular
the final chapter entitled “Coda: The Faustian Pact”— that led to Birkets’s participation in an
August 1995 Harper’s Magazine forum dubbed “What Are We Doing On-line?”. Along with the
Electronic Frontier Foundation’s John Perry Barlow, Wired magazine’s Kevin Kelly, and like-
minded author Mark Slouka, Birkets debated in print the pros and cons of the “message of this
new medium,” the Internet. Birkets was the resident skeptic.

Still, nothing Birkets said in Harper’s matched his “Coda” chapter, which ends with the
exhortation “Refuse it.” I'll let you guess (or at least read on your own) what he wants us to shy
away from. Birkets may be on to something when he says, “my core fear is that we
are...becoming shallower” and “our whole economic and technological obsession with getting on-
line is leading us away...from the premise that individualism and circuited interconnection are, at
a primary level, inimical notions.” In any event, it is entirely proper to question basic premises as
our online experience evolves.

Letters to the editor in subsequent Harper’s were hot and heavy, with Birkets even having Rilke
poems thrown back at him. It's doubtful that analyzing imagery in the works of Virginia Woolf
ever created such a firestorm.

All of this led me to go hear Birkets when he showed up at a local bookstore. He agreed, for
instance, that the “Coda” chapter was the most controversial— and newsworthy— part of the
book. More interestingly, “Coda” wasn't part of the original manuscript— it was added when his
editor sensed something was lacking. What the book needed, said the editor, was a more
powerful ending. Birkets returned to his Smith-Corona (what else?) and wrote “Coda,” launching
him on to the literati equivalent of day-time talk shows. :

While Birkets’s editor is possibly an exception, sometimes we editors do end up eating crow.
Not that I'd ever fess up to feasting on such foul fowl, but even editors can change their minds
once in a while.

For instance, regular readers of this space (both of you) may recall that in the November 1995
issue, I made a smart-aleck remark about a University of California software patent covering
embedded executable content (“applets”) and the World Wide Web. Shortly thereafter, I heard
from Michael Doyle, chairman of Eolas Technologies and co-inventor of the patented technique.
Michael set me straight on the licensing terms of patent, pointing out that Eolas, which holds
exclusive rights to the patent, is not asking programmers to pay royalties for developing software
that runs applets. Instead, Eolas is only requiring that developers adhere to a standard API for
Web development.

Michael gladly put his comments in writing, which we published in the January 1996 “Letters”
column. For this issue, Michael — along with Eolas cofounders Cheong Ang and David Martin—
wrote our lead article, which delves into the history and technical underpinnings of their work.

By using the patent as a carrot instead of a stick, Eolas has taken a step in helping
programmers get on with the job of developing next-generation, interactive Web applications.
Clearly, supporting a single standard API is better than tinkering with a dozen or so competing.
ones. (This problem of dealing with competing APIs is partly behind the current campaign to
eradicate those annoying “enhanced for Netscape” tags.) The bottom line is that both developers
and users want a standard.

This isn't to say that I've changed my mind about software patents. I've yet to see how they've
helped the software industry move forward. On the surface, however, the Eolas proposal may be
an exception. Of course, there’s nothing to say that Eolas will be successful. In all likelihood,
browser vendors will continue to plod along their proprietary paths, much like operating-system
vendors of a decade ago (remember TRS-DOS?).

You don't have to agree or disagree with the concept of software patents to appreciate the
spirit of Eolas’s proposal. If nothing else, Doyle and crew should be commended for coming up
with a creative approach to a thorny problem. Doyle’s article— and the proposal it makes—is
certainly one of the more controversial pieces we've recently published. I look forward to hearing

from you about both the article and the proposal.

Jonathan Erickson
editor-in-chief

You’d think that someone who's devoted his professional life to writing about “serious”

Dr. Dobb’s Journal, February 1996

Proposing a

Standard Web API

Short circuiting the APl wars

Michael Doyle, Cheong Ang, and David Martin

he World Wide Web has matured from a relatively limited

system for passive viewing of hypermedia-based documents

into a robust framework for interactive application devel-

opment and delivery. Much of this progress is due to the
development of embedded executable content, also known as
“inline Web applets,” which allow Web pages to become full-
blown, compound-document-based application environments.
The first Web-based applets resulted from research begun in the
late 1980s to find a low-cost way to provide widespread access
for scientists and educators to remote, supercomputer-based vi-
sualization systems.

The Visible Human Project

In the late 1980s, the National Library of Medicine began a pro-
ject to create a “standard” database of human anatomy. This
“Visible Human Project” was to comprise over 30 GB of volume
data on both male and female adult human anatomical struc-
tures. It was one of the original Grand Challenge projects in the
federal High-Performance Computing and Communications ini-
tiative, the brainchild of then Senator Al Gore. As a member of
the scientific advisory board for this project, one of us (Michael
Doyle) became interested in the software issues involved in
working with such a large database of the most detailed image
information on human anatomical structure yet available. His
group in the Biomedical Visualization Lab (BVL) at the Univer-
sity of Illinois at Chicago realized at the time that much research
would have to be done to make such a vast resource both func-
tional and accessible to scientists all around the world,

Until that time, medical visualization systems were designed
to work on 3-D datasets in the 15-30 MB range, as produced
by the typical CT or MRI scanner. High-end graphics workstations
had adequate memory capacity and processor power to allow
good interactive visualization and analysis of these routine

The authors are cofounders of Eolas Technologies Inc. and can
be contacted at bttp.//www.eolas.com.

18

datasets. The Visible Human data, however, presented an en-
tirely different set of problems. To allow widespread access to
an interactive visualization system based upon such a large body
of data would require the combined computational power of
several supercomputers, something not normally found in the
typical biomedical scientist’s lab budget.

Doyle’s BVL group immediately began to work on solving the
information-science problems related to both allowing interactive
control of such data and distributing access to the system to sci-
entists anywhere on the Internet. Our goal was to provide ubiqg-
uitous access to the system, allowing any user connected to the
Internet to effectively use the system from inexpensive machines,
regardless of platform or operating system.

The Promise of the Web

We saw Mosaic for the first time when Larry Smarr, director of
the National Center for Supercomputing Applications, demon-
strated it at an NSF site visit at BVL in early 1993. We became
immediately intrigued with the potential for Mosaic to act as
the front end to the online visualization resource we had been
designing. Immediately after Michael Doyle left the University
of Illinois to take the position of director of the academic com-
puting center at the University of California, San Francisco, we
began enhancing Mosaic to integrate it with our system. We
designed and implemented an API for embedded inline ap-
plets that allowed a Web page to act as a “container” docu-
ment for a fully interactive remote-visualization application, al-
lowing real-time volume rendering and analysis of huge
collections of 3-D biomedical volume data, where most of the
computation was performed by powerful remote visualization
engines. Using our enhanced version of Mosaic, later dubbed
“WebRouser,” a scientist using a low-end workstation could ex-
ploit computational power far beyond anything that could be
found in one location.

This work was shown to several groups in 1993, including
many that were later involved in projects to add APIs and app-
lets to Web browsers at places such as NCSA, Netscape, and
Sun. Realizing our group’s work enabled the transformation of
the Web into a robust platform for the development and de-
ployment of any type of interactive application, in 1994 the Uni-
versity of California filed a U.S. patent application covering em-
bedded program objects in distributed hypermedia documents.
Eolas Technologies was then founded by the inventors to pro-
mote widespread commercialization and further development of
the technology.

Dr. Dobb’s Journal, February 1996

Enhancing the Web

Once the concept of the Web as an environment for interac-
tive applications was initiated, the question was how to fur-
ther develop it. Toward the end of 1993, we discussed the
relative merits of building an interpreted language, such as
Basic or Tcl, directly into the browser versus enhancing
browsers through a “plug-in” API. We chose the API approach,
believing that the best way to add language support would
be by adding interpreters as external inline plug-in applets,
which we called “Weblet applications.” This would enable us
to add a new language or other feature merely by develop-
ing a new Weblet application, without having to reengineer
the browser itself.

Figure 1 is a Weblet-based version of the public-domain RAS-
MOL visualization program that lets users view, analyze, and vi-
sualize a 3-D protein structure from within the Web page. A sin-
gle programmer converted the original RASMOL source code into
Weblet form in only ten hours.

Some time later, both limited API support, such as NCSA's
CCI, and embedded-language support, such as Java, began to
appear in various Web browsers; the <EMBED...> tag (which
we first implemented in mid-1993) appeared in beta versions
of Netscape’s product by summer of 1995. Still, it wasn’t until
October of 1995 that the Netscape implementation began to
approach the functionality of <EMBED...> used in WebRouser.
The enormous effect of these developments in accelerating the
commercialization of the Internet industry prompted us to re-
lease the first (free-for-noncommercial-use) distribution ver-
sion of WebRouser for UNIX platforms in September 1995

o e e T e A e S N TS | e e e e e P e

The WebRouser Approach

Our general philosophy with WebRouser was to allow en-
hancement of the browser’s functionality through object-oriented,
modular application components that conform to a standard
API, rather than turning the browser into a monolithic applica-
tion with an ever-increasing code base. This encourages Web
developers to take a document-centric approach to application
development. The Web page itself becomes the mechanism for
doing work, through collections of small, efficient Weblet build-
ing blocks, rather than the menagerie of top-heavy applications
found on the common desktop PC.

The first release of WebRouser also included other enhance-
ments aimed primarily at improving the interactivity of Web
pages. These included client-side image maps, a document-
driven button bar, and document-driven modification of the
browser’s menu tree.

Client-side image maps are supported through the Polymap
format. Polymap files are essentially GIF files with polygon and
URL information stored in the image’s comment fields. To pre-
vent complex polygon information from bloating the file, all of
the comment fields are compressed and decompressed using
the GIF LZW algorithm. Polymap files require no special treat-
ment of the HTML code. WebRouser autodetects the presence
of Polymap data when it reads inline GIFs. If a server-side
(ISMAP) image map points to a Polymap GIF, then WebRouser
will ignore the ISMAP data and give the Polymap data priority.
Hotspots are decoded in real time and highlighted as the mouse
moves over the image, and the associated URL is displayed at
the bottom of the screen, providing users the same style of in-

teractivity that hotwords have in HTML text. The Polymap for-

mat specification is open and freely available for use. You can
find the spec at http://www.eolas.com/papers/Papers/Polymap/.

The <LINK...> and <GROUP...> tags allow Web pages to dy-
namically customize elements of the browser's GUI. The LINK
tag allows the creation of a document-driven button bar imple-
mented by placing tags in the document header, with the syn-
tax <LINK ROLE="button label" HREF="htip://...">. Several of
these tags in sequence result in buttons below the URL window,
similar to Navigator'’s What's New or What's Cool buttons, but
they are dynamically defined by the page currently being viewed.
Similarly, the GROUP tag allows the Web page to modify the
browser's GUI; however, this tag differs by defining a hierar-
chical menu that reflects an entire tree of Web pages. In Exam-
ple 1, a typical GROUP menu trigger, the text string “Click here
to view the WebRouser slide show” appears as a conventional
anchor on the Web page, but selecting it brings up the
“slide_1.html” and activates the GROUPS menu option on Web-
Rouser’s menu bar. Slide Show is the first menu option, with a
submenu whose options are Slide 1, Slide 2, and Slide 3. This
allows the user to easily navigate through, for example, the “year,
issue, article” hierarchy of online magazines.

The Web API

Of course, the key feature of WebRouser is the implementation
of the <EMBED...> tag, through which inline plug-in Weblet
applications are supported in Web pages. X Window applica-
tions that conform to the Eolas distributed hypermedia object
embedding (DHOE) protocol can run— inline and fully inter-
active—within Web pages in the WebRouser window. WebRouser
also supports the NCSA common client interface (CCI), which
allows the Weblet to “drive” the browser application. DHOE and
CCI collectively make up the Eolas Web API (WAPID) as sup-
ported in WebRouser.

WAPI is minimalist, combining the functionality of DHOE and
CCI to exploit both the efficiency of X-events for communica-
tion of interaction events and graphic data and the flexibility of
socket-based messaging for browser remote control and HTML
rendering of Weblet-generated data. We are currently working
on a cross-platform API, in the form of an OpenGL-style com-

mon-function library. The current minimalist WAPI specification
will allow us greater flexibility in creating a cross-platform API,
while maintaining compatibility with Weblets developed under
the UNIX WAPI specification.

Folas’ primary objective with respect to the pending Web-ap-
plet patent is to facilitate the adoption of a standard API for in-
teractive, Web-based application development, and then to de-
velop innovative Weblet-based applications for the growing
Internet software market. For an example of such a Weblet ap-
plication, see the accompanying text box entitled “WebWish:
Our Wish is Your Command.” We intend to short circuit the API
wars brewing between the major Web-browser competitors. In
addition to creating a universal standard API, we are also insti-
tuting a mechanism for ensuring continued evolution of the WAPI
spec on a regular timetable. Royalty-free licenses for browser-
side implementation of Web applets under the pending patent
have been offered to the major browser companies, and are in
various degrees of negotiation. The primary condition of these
licenses is that each licensee must conform to the WAPI protocol,
and no other applet-integration protocol. A consortium of Eo-
las licensees is being formed to set the continuing WAPI speci-
fication and update it at regular intervals. The widespread ac-
ceptance of the developing WAPI standard will allow application
developers to concentrate on the functionality of their applets
without worrying which Web browser their customers will use.

Creating a WebRouser Weblet

WebRouser communicates with Weblet applications through a
set of messages called the DHOE protocol. DHOE messages are
relatively short character strings, which allow convenient, effi-
cient use of existing interprocess-communications mechanisms
on various platforms. We have implemented DHOE systems on
several X Window platforms, including IRIX, SunOS, Solaris,
OS/F 1, Sequent, and Linux. Implementations for both Microsoft
Windows and Macintosh are planned for release by the end of
the first quarter of 1996.

Listing One (listings begin on page 91) is a skeleton program
for Weblet-based applications that can work with WebRouser.
The current DHOE protocol defines a set of messages that syn-
chronize the states on the DHOE clients and DHOE servers. The
first four messages are used by the server to set up the DHOE
system at startup, refresh/resize the client, and terminate the sys-
tem on exit. The rest of the messages are sent by the browser
client to the data server. They include messages about the client
drawing-area visibility, and mouse and keyboard events.

Programming with DHOE involves initializing DHOE by in-
stalling a message-handling function, registering the DHOE client
with the DHOE server, and registering various callbacks with
their corresponding messages. The DHOE client and server may,
at any time after client/server registration, send messages to each
other. The messages (see Table 1) are character strings, and may
be followed by different types of data. DHOE also supports
buffer sharing (that is, bitmaps and pixmaps) between DHOE
clients and servers.

Adding the DHOE mechanism into an existing data handler
creates a DHOE server. The DHOE library kit consists of pro-
tocol_lib.h (the declaration file) and protocol_lib.c (the imple-
mentation file). To follow the Xt programming conventions, the
DHOE strings are #defined with their Xt equivalents (DHOEkeyUp

{GROUP ROLE="Slide Show">
<LINK ROLE="Slide 1" HREF="glide_ 1.html">
<LINK ROLE="Slide 2" HREF="slide_2.html">
<LINK ROLE="Slide 3" ="glide_3.html">
Click here to view the WebRouser slide show </GROUP>

Figure 1: Typical Weblet application.,

20

Example 1: Typical GROUP menu.

Dr. Dobb’s Journal, February 1996

3 A .

(continued from page 20)

is mapped to XtNkeylUp, and so on). Messages from the DHOE
server to the DHOE client (for example, external app—hyper-
media browser) are:

e XtNrefreshNotify, server updating.
o XiNpanelStartNotify, server ready.
o XiINpanelExitNotify, server exiting.

Message Description

DHOEserverUpdate Tells a client to update data.
DHOEserverReady Tells a client the server is ready.
DHOEserverExit Tells a client the server is exiting.

DHOEserverConfigureWin Tells a client to resize/reposition

the DHOE window.

Messages from the DHOE client to the DHOE server (for ex-
ample, hypermedia browser—external app) are:

o XtNmapNotify, DHOE area shown.

o XtNunmapNotify, DHOE area hidden.

e XtNexitNotify, DHOE area destroyed.

¢ XtNbuttonDown, DHOE area button down.
e XtNbuttonUp, DHOE area button up.

* XiNbuttonMove, DHOE area button move,
¢ XtNkeyDown, DHOE area key down.

e XtNkeyUp, DHOE area key up.

You can name these messages differently as long as the
names are merely aliases of the original DHOE strings. These
messages are defined in protocol_lib.h, which must be included
in your program.
The following DHOE fundamental functions are provided in
protocol_lib.c:

DHOEclientAreaShown Tells the server the DHOE area is
exposed.
DHOEclientAreaHidden Tells the server the DHOE area is
being hidden.
DHOEclientAreaDestroy Tells the server the DHOE area is
being destroyed.
DHOEbuttonDown Sends mouse-pointer coordinates
to the server on button down.
DHOEbuttonUp Sends mouse-pointer coordinates
to the server on button up.
DHOEbuttonMove Sends mouse-pointer coordinates
to the server on button move.
DHOEkeyDown Sends the corresponding keysym
to the server on key down.
DHOEkeyUp Sends the corresponding keysym

fo the server on key up.

Table 1: DHOE messcages.

e void handle_client_msg(Widget w, caddr_t client_data,
XEvent *event), a function called back by XtAddEvent-
Handler when it sees a message from the DHOE client (the
hypermedia browser). To register this function with Xt, your
program (DHOE server) should call XtAddEventHan-
dler(Widget app_shell, NoEventMask, Trie, handle_client_
msg, 102);. Here, handle_client_msg will be called with pa-
rameters w=app_shell, client_data=102, an event pointing
to an X-event structure generated by Xt when it sees the
message. The app_shell variable is usually the application
shell returned by XtInitialize, XtAppInitialize, or XtVa-
Appinitialize.

(«F]
=
on
c
Ll
(4}]
wv)
(C
=)
©
+—
1]
(=
e
o
>
LD
o
=
S
o
—
e
i
o
v
("]
o
-
()

Power Too Abundant to Meter

Powerful

NeoAccess is the most powerful object-oriented
database engine available. It displays electrifying
performance—up to ten times that of its competitors.
Behind its elegant programming interface is a high
performance query engine utilizing: extended binary
trees and binary search algorithms tuned for short
access times, dynamically combined, collapsed, and
compressed indices, and object caching for nearly
instantaneous access to previously used objects.

No Runtime Fees

Get the power of NeoAccess, and avoid the expense
and administrative hassle of feeding the runtime fees
meter. You pay one affordable price no matter how
many copies of your application you sell or use.

CIRCLE NO. 239 ON READER SERVICE CARD

Cross Platform :

Others may promise cross-platform development
tools—NeoLogic delivers. NeoAccess is a set of C+4
classes designed for use with popular compilers and
application frameworks on Windows®, Macintosh®,
and Unix™ platforms. Full source code is included so
it can even be used with custom frameworks.

Proven

Thousands of commercial and in-house developers
have already found that NeoAccess enabled them to
build fast, powerful applications in record time. That'g
why NeoAccess based applications are already oper
ating on millions of computers. Tap into the power!

il
neo-logic
Powering Development of Object-Oriented Applications

NeoLogic Systems te 12

neolo neologic.com

1450 Fourth St
Berkeley, CA 94710

V. 510.524.5897
f. 510.524.4501

(continued from page 22)

o void register_client(Widget w, Display #*remote_display);, which
registers your program with the DHOE client.

o void register_client_msg_callback(char *msg, void (*func-
tion_ptr)());, which registers a function to be called back
when Xt sees a string that matches msg. This function may
appear anywhere in your program. You do not need to han-
dle the XtNmapNotify/XtunmapNotify pair because DHOE
servers deiconify/iconify when they receive these messages.
You must specify a “quit” function to shut down your appli-
cation gracefully on XtNexitNotify. Button- and key-message
handling are optional. To obtain mouse coordinates, call
get_mouse(int *x, int #y) for button-handling functions and
get_keysym(KeySym #keysym) for key-handling functions.
Keysym is defined by X11 (in keysymdef.h) for cross-platform
compatibility.

e void send_client_msg(char *msg, Display *remote_display,
Window remote_window);, which sends a message with the
value msg to the DHOE client at a display=remote_display and
has an X window ID of remote_window. The remote_display
and remote_window must be provided. This function may ap-
pear anywhere in the program after register_client.

A Weblet CAD-File Viewer

WT is an applet that allows interactive rotation and zooming of
a 3-D CAD file stored in NASA’s neutral file format (NFF). The
source code for the sample Weblet application is available elec-
tronically (see “Availability,” page 3) and at http://www
.eolas.com/eolas/webrouse/wtsre.tar.Z. What follows is a brief
walk-through of the weblet-enhancing sections of the code (il-
lustrated in the code listing just mentioned as a “simplified sam-
ple program outline”).

1. The outline starts with a fypedefand some global declarations.
The new type, ApplicationData, defines a structure common to
all Xt Weblets. Together with the myResources and myOptions stat-
ic variables, myAppData (which is of type ApplicationData) is used
with XiGetApplicationKesources in main() to extract the command-
line arguments flagged with win, pixmap, pixmap_width, pix-
map_height, and datafile. This is how Xt extracts command-line
arguments and is unnecessary if the program has alternatives to
decode command-line arguments. The aforementioned global vari-
ables and XtGetApplicationResources nicely store the information
in a line such as wt -win 1234 -pixmap 5678 -pixmap _width 400
- pixmap_beight 300 -datafile fname into myAppData.

2. In main(), app_shell is first initialized the Xt way by using
Xtinitialize, which opens a connection to the X server and cre-
ates a top-level widget. XtGetApplicationResources gets the ap-
plication resources as in step 1. The next section conveniently
uses the myAppData.win variable to find out if the Weblet should
run as a DHOE server or a stand-alone program. For a DHOE
server, the program adds the handle_client_msg function from
the DHOE implementation, protocol_lib.c, as the handler of the
X client message event. The subsequent lines call three more
DHOE functions: register_client, to initiate a handshake with the
DHOE client; register_client_msg_callback, to register myQuit()
as the callback function of the message XiNexitNotify; and
send_client_msg, to send a XtNpanelStartNotify message, telling
the DHOE client that the server is ready. The program then en-
ters the conventional XtMainLoop().

3. Two more functions must be modified. The drawing rou-
tine (myDraw) needs to copy the drawn picture (myPixmap in
this case) onto myAppDaia.pixmap, the client’s pixmap. The func-
tion then should send an XtNrefreshNotify message to the client,
informing it of the change. The myQuit() [unction registered in

to the Web in 1995 was received enthusiastically by the en-

tire Internet community as a welcome means for increasing
the interactivity of Web-based content. Despite much of the
publicity surrounding Java, which described it as an “inter-
preted” language, Java code must be compiled to a “virtual
machine,” which is then emulated on various platforms. A Web
browser that supports the Java emulator is not enough to devel-
op Java-based applications— the applet developer must pur-
chase a compiler from Sun or its licensees at considerable cost.

Fully interpreted languages like Tcl/Tk or Basic are extremely
useful, partly because they don't require a compiler for ap-
plication development, just the language interpreter and any
ASCII text editor. In choosing a programming language to
adapt to the Web API, we decided early on that a fully inter-
preted programming language would be vital to quick,
widespread Weblet implementation. We chose Tcl/Tk because
of its robust capabilities and widespread use.

By the time you read this article, Eolas’ WebWish Tcl/Tk in-
terpreter should be available for both WebRouser under UNIX
and Netscape Navigator 2.0 on Windows and Macintosh (see
http://www .eolas.com/eolas/webrouse/tcl.htm). It supports
Tcl 7.5 and Tk 4.1, as well as the Tcl-DP and EXPECT exten-
sions. A new security feature has been added that exploits
PGP-style digital signatures in order to authenticate scripts
from trusted sources and to prevent unwanted execution of
scripts from untrusted sources. This Weblet application turns
WebRouser and Navigator into complete application-development

s un'’s announcement of the adaptation of the Java language

WebWish: Our Wish is Your Command

environments, without the need for expensive compilers. All
that is needed to develop a WebWish-based application is
WebWish, a WAPI-compliant Web browser, and a good text
editor. Developers can draw upon the vast existing resources
of freely downloadable Tcl/Tk program source code, and the
expertise of thousands of experienced programmers. :

WebWish provides an easy-to-use rapid prototyping environ-
ment, with built-in support for socket-based communications, re- |
mote procedure calls (RPCs), and the ability to “remote control”
existing text-based server systems without reengineering the serv-
er. WebWish can run either as a Weblet in a Web page, or in
stand-alone mode on either the client or a server machine. Web-
Wish running in a Web page can communicate directly with oth-
er copies of WebWish running on remote servers, either through
sockets or RPCs. This allows WebWish to act as “middleware” for |
the Web, allowing Web-based interfaces to create state-aware
graphical front ends to existing text-based legacy systems, with-
out changing the operation of the legacy-server application;

Last November, Chicago’s Rush Presbyterian St. Luke’s Med-
ical Center surgical department created both client and server
WebWish applets for just such a purpose. The applets allowed
physicians using WebRouser to interactively query and browse
Rush’s (Informix) SQL-based Surgical Information System, con-
sisting of medical records on over 1.5 million patients. The en-
tire project took one programmer exactly 12 hours from start
to finish. Try that with Java!

—M.D,, CA,, and DM.

24

Dr. Dobb’s Journal, February 1996

(continued from page 24)
main() needs to send an XiNpanelExitNotify message to the
client, telling the client that the server is terminated.

This Weblet can be tested by putting it in your path and point-
ing your copy of WebRouser to http://www.eolas.com/eclas/
webrouse/office. htm.

The Eolas Web OS
In addition to the WebWish applet described in the text box, a
Java interpreter Weblet application is planned for release by the
end of March 1996. Java is a compiled language that produces bi-
naries for a “virtual machine.” The binaries are downloaded to
the client and run on virtual-machine emulators that run on Mac-
intosh, Windows, and UNIX platforms. Java applications tend to
be smaller and more efficient than WebWish interpreted code,
but they are far more difficult to develop. Eolas is developing a
virtual operating system, the Web OS (planned for release late in
1996) that will allow far more robust, compact, and efficient com-
piled applets to be developed than is possible with Java. The Web
OS is key to Eolas’ long-term goal to transform the Web into a
robust, document-centric, distributed-component application en-
vironment. It is a real-time, preemptive multitasking, multithreaded,
object-oriented operating system that will run efficiently on low-
end platforms, even on 80286-based systems and handheld PDAs.
The Web OS can run within Windows, Macintosh, and UNIX
environments, or in stand-alone mode on machines with no pre-
installed operating system. It supports dynamic memory man-
agement and linked libraries, and is both graphical and object ori-
ented at the OS level. The OS kernel includes fully defined object
classes, inheritance, and direct messaging. The OS includes sev-

eral building-block objects that allow sophisticated applications—
WYSIWYG word processors, spreadsheets, databases, e-mail sys-
tems, and the like— to be developed with a minimum of code.
These applications are created primarily by subclassing and com-
bining various Web OS component objects. Since new applica-
tions are created by defining differences and additions to the con-
stituent objects, this results in tiny, robust, efficient binaries that
optimize both bandwidth usage and server storage requirements.
This platform is so efficient that a complete WYSIWYG word pro-
cessor can be created in less than 5K of compiled code. Appli-
cations developed for the Web OS are likely to be smaller than
most of the inline GIF images found on average Web pages today.

The operating system employs a single imaging model for
screen, printer, fax, and other output devices; an installable file
system, for both local and remote file access; direct TCP/IP and
socket support; distributed objects; and security through public-
key encryption and “ticket-based” authentication.

As the Internet pervades more of our work environments, the
Web OS will allow the Web to become the preferred environment
for new and innovative productivity, communications, and entertain-
ment applications for all hardware platforms. The concept of a
machine-specific operating system will become irrelevant, since
any application will be available to the average user, regardless
of hardware platform. Much of the computational load for ap-
plications will be pushed off to remotely networked computa-
tional engines, allowing low-cost Web terminals to act as ubig-
uitous doorways to potentially unlimited computational resources.
The Web will be your operating system and the Internet will be
your computer.

DDJ
(Listing begins on page 91.)

T

by Innoval Systems
ke sending and receiving email easier!
uilt-in editor, quoted replies, MIME attach- -
,drag-and-drop filing, printing and
g; ttheworld atyourﬁngertlps

49.00

ilgraeve
o onaPCwith 05/2, you Buy them b
r by modem, serial cable or leted ﬁles,'
LAN. See the full desktop of the remotePCon p
your screen, control mouse and keyboard '

Your Single Source for 05/2 Solutions is ulso
Your Single Source for Infernef Solutions!

0OS/2 WarpConnect

Call, or check our web pages for all the info!

IBM’s Internet Connection Server
AntiVirus Hyperwise
DB2 World Wide Web Connection

CIRCLE NO. 229 ON READER SERVICE CARD

26

Dr. Dobb’s Journal, February 1996

STANDARD WEB API

L)

Listing One

#include "protocol_lib.h"

f;-i~uay to define resources and parse the cmdline args +/

/* WebRouser 2.6-b2 gives the embedded window information through these args #/
typedef struct{

int win;

int pixmap:

int pixmap_width;
int pixmap_height;

char #datafile;

) ApplicationData, *ApplicationDataPtr;

static XtResource myResources[] = {
{"™win", "Win", XtRInt, sizeof(int),
¥tOffset (ApplicationDataPtr, win). XtRImmediate, @},
("pixmap", "Pixmap", XtRInt, sizeof(int),
Xtoffset(ApplicationDataPtr, pixmap), XtRImmediate, @),
("pixmap_width", "Pixmap_width", XtRInt, sizeof(int),
XtOffset (ApplicationDataPtr, pixmap_width), XtRImmediate, 400},
{"pixmap_height", "Pixmap_height", XtRInt, sizeof(int),
XtOffset(ApplicationDataPtr, pixmap_height), XtRImmediate, 420},
{"datafile", "Datafile", XtRString, sizeof(char#),
¥tOffset (ApplicationDataPtr, datafile), XtRImmediate, NULL}

)

static XrmOptionDescRec myOptions[] = {
{"-win", "#win", XrmoptionSepArg. @},
("-pixmap", "#pixmap", XrmoptionSepArg, 8},
{"-pixmap_width", "#pixmap_width", XrmoptionSepArg, @1,
{"-pixmap_height", "#pixmap_height", XrmoptionSepArg, @1,
{"-datafile”, "#datafile", XrmoptionSepArg, NULL},

3

ApplicationData myAppData;

void myDraw()
{
/% do your drawing... #/

/# if you draw into your own drawables (myPixmap in this case) #/
if (myAppData.win) {
/% copy from myPixmap to the "shared" pixmap #/
XCopyArea(display, myPixmap, myAppData.pixmap, myGC, @, @, WIN_WIDTH,
WIN_HEIGHT, @, 8):
/% tell WebRouser to update the drawing window #/

send_client_msg(XtNrefreshMotify, display, myAppData.win)
}

1
void myQuit()

{
/% tell WebRouser you are exiting... */
if (myAppData.win)
send_client_msg(XtWpanelExitNotify, display. myAppData.win):
/* Motif way of exiting */
XtCloseDisplay (XtDisplay(any widget)):
exit(1):
1
main()
{

Widget app_shell;

};.thnitialize dees XOpenDisplay, as well as creates a toplevel widget #/
app_shell = ¥tInitialize("wt", "Wt", myOptions, XtMumber(myOptions).
&arge, argv):

/* This fune fill up myAppData with user specified values/default values */
/% We get the embedded window's info this way *

XtGetApplicationResources (app-shell, &GmyAppData, myResources,

XtWumber (myResources), NULL. 8):

/% if we have an external window to display the image... #/

if (myAppData.win) {
¥thddEventHandler (app_shell ,NoEventMask,True handle_client_msg,NULL):
register_client(app_shell, display):
/* register the func to be called when WebRouser exits #/
register_client_msg_callback (XtNexitNotify, myQuit);
/% tell WebRouszer you have started fine #/
send_client_msg(XtNpanelStartNotify, display, myAppData.win):

}

iééninLoop(}: /% Motif's event loop */

}
/# End of program listing */

. &
Listing One
STATIC int KSendPacketFromCache(KERMIT_PRIVATE *pK,long sequence,int addToList)
{

int slot = sequence & 63;
long prev, next;

if ((pK->exchange[slot].myPacket.type == @)
11 (pK-»exchange [slot] .myPacket.data == NULL))

Dr. Dobb’s Journal, February 1996

return kOK;
prev = pK->exchange[slot].previousPacket; /# Unlink from list #/
next = pK-»exchange[slot] .nextPacket;
if ((pK-»lastPacket & 63) == slot) pK-»lastPacket = prev
if (prev 3= @) pK-Yexchange[prev & 63] .nextPacket = next:
if (next »>= @) pK-»exchange[next & 63].previousPacket = prev:
pK-rexchange[slot] .nextPacket = -1;
pk-rexchange [slot] .previousPacket = addTolist 7 pK->lastPacket : -1;
if (addTolist) (

if (pK-»lastPacket >= @) /# Add to end of list */

pK->exchange [pK->lastPacket & 63] .nextPacket =
pK->exch [slot] .seq
pk=>lastPacket = pK->exchange[slot].sequence;

pK-»exchange [slot] .tries*+; /* Count number of sends #/
pK-rexchange [slot] . sendTime = SerialTime (pK->initTime):
[+ Stamp time of send %/
return StsWarn (KSendPacket (pK, slot, pK-»exchange[slot].myPacket.type,
/% Send it */
pK-rexchange[slot] .myPacket.data,
pH-rexchange[slot] .myPacket.length)):

}
STATIC int KSendPacketReliable (KERMIT_PRIVATE *pK, BYTE type,
const BYTE #pSendData, unsigned long sendDatalength,
unsigned long rawDataLlength)

{
int blocked = FALSE;
int err;
int slot = pK-»sequence & 63;
int timeout = pK->my.timeout;

{ /# Put packet into cache #/
EXCHAMGE #pThisExchange = &(pK->exchange[slot]):
if (pThisExchange-»myPacket.data == NULL) {
if (pK-!minCache ¢ pK-rminUsed) (
SwapSlots (pK->minCache, slot);
/% Move free exchange to end of window */
pK-»minCachet+;
pThisExchange->yourPacket .type = @;
} else return StsWarn (kFail): /# Internal consistency failure s/
1
if (pSendData == pK-rspareExchange.myPacker.data) {
/* In the reserved slot 7 #/
BYTE #pTmp = pThisExchange-’myPacket.data: /* Just swap it in */
pThisExchange-*myPacket.data = pK-»spareBxchange.myPacket.data:
pK-»spareExchange.myFacket.data = pTmp;
} else /% copy it #/
memepy (pThisExchange->myPacket.data, pSendData, sendDataLength);
if (pK-»seq > pE- Used) pK- Used = pK-> H
/* Update end of window */

pThisExchange->sequence = pK-»sequence;

/# Finish initializing this exchange #/
pThisExchange->myPacket.length = sendDatalength:
plhisExchange->myPacket.type = type;
pThisExchange->rawLength = rawDataLength:
pThisExchange->tries = 8;
pE-»txPacket.data = pK->spareExchange.myPacket.data;
pK->txPacket.length = 8;

}
StsRet (KSendPacketFromCache (pK, pK->sequence, TRUE)):; /# Send packet #/
if (pK-»minUsed ¢= pK->minCache) blocked = 1; /* Are we blocked? =/
if (pK-rmaxUsed - pK-minUsed + 1 »= pEK->currentWindowSize)
/* How blocked are we? #/
blocked = (pK->maxUsed - pK->minUsed + 1) - pK->currentWindowSize + 1;
err = KReceivePacketCache (pK, ©); /# Get a packet if one's ready */
do { /# Until we're not blocked and there are no more packets pending */
switch (err) {
case kBadPacket: /* Didn't get a packet */
case kTimeout:
break;
default: /# Unrecognized error, pass up to caller #/
return StsWarn (err):
case kOK: /* Got onel #/
£

EXCHANGE #*pThisExch = &(pK- h
switch (pK->rxPacket.type) {
case 'N': /# Got a NAK */

if (pThisExchange->myPacket.type != @) /# Resend packet *#/

StsRet (KSendPacketFromCache (?K. pK->rxPacketSequence, FALSE));
if ((pK-»currentWindowSize » 1) || (pK->maxUsed > pK->minUsed))
break: /* Don't generate implicit ACKs for large windows */
pThisExchange = &(pK-»exchange [(pK->rxPacketSequence - 1) & 63]):

pThisExchange->yourPacket.type = 'Y';
case 'Y': /* Got an ACK */
if (pThisExchange->rawLength » @) { /+ ACKed before?#/
if (pThisExchange-tries == 1)} { /# Update round-trip stats */
long now = SerialTime (pK->initTime);
long thisDelay = now - pThisExchange->sendTime;
if (pK=droundTripSamples++ == @) { /% First sample? #/
pK-*roundTripDelay = thisDelay:
pE->roundTripDelayVariance = @;
} else {
long oldAverage = pE->roundTripDelay:
long diffSquared;
if (pK-rroundTripSamples » 3@) /+* Average first 38 */
pE->roundTripSamples = 3@:
/* Then decaying average */
pK->roundTripDelay += (thisDelay - pK-»roundTripDelay)
/ pE-»roundTripSamples;
diffSquared = (thisDelay - cldAverage) *
(thisDelay - cldAverage);
pK-rroundTripDelayVariance += (diffSquared -
pK->roundTripDelayVariance) /
pE->roundTripSamples:
pK->roundTripDelaySD = (pK->roundTripDelaySD +
pE-»roundTripDelayVariance /
pK->roundTripDelaySD) / 2;

(continued on page 92)

ge [pK->rxPacketSequence & 63]);

91

